
Soft Cosine Measure
Implementation Notes

Vít Novotný

Faculty of Informatics, Masaryk University, Brno, Czechia

Introduction
The standard bag-of-words vector space model (vsm) represents documents

as real vectors. Documents are expressed in a basis where each basis vector
corresponds to a single term, and each coordinate corresponds to the frequency
of a term in a document. Consider the documents

d1 = “When Antony found Julius Caesar dead”, and
d2 = “I did enact Julius Caesar: I was killed i’ the Capitol”

represented in a basis {αi}
14
i=1 of R14, where the basis vectors correspond to the

terms in the order of first appearance. Then the corresponding document vectors
v1, and v2 would have the following coordinates in α:

(v1)α = [1 1 1 1 1 1 0 0 0 0 0 0 0 0]T,and
(v2)α = [0 0 0 1 1 0 2 1 1 1 1 1 1 1]T.

Assuming α is orthonormal, we can take the inner product of the `2-normalized
vectors v1, and v2 to measure the cosine of the angle (i.e. the cosine similarity)
between the documents d1, and d2:

〈v1/‖v1‖,v2/‖v2‖〉 =

(
(v1)α

)T
(v2)α√(

(v1)α
)T
(v1)α

√(
(v2)α

)T
(v2)α

≈ 0.23.

Intuitively, this underestimates the true similarity between d1, and d2. Assuming
α is orthogonal but not orthonormal, and that the terms Julius, and Caesar are
twice as important as the other terms, we can construct a diagonal change-of-
basis matrix W = (wi j) from α to an orthonormal basis β, wherewii corresponds
to the importance of a term i. This brings us closer to the true similarity:

(v1)β = W(v1)α = [1 1 1 2 2 1 0 0 0 0 0 0 0 0]T,
(v2)β = W(v2)α = [0 0 0 2 2 0 2 1 1 1 1 1 1 1]T, and

〈v1/‖v1‖,v2/‖v2‖〉 =

(
W(v1)α

)TW(v2)α√(
W(v1)α

)TW(v1)α

√(
W(v2)α

)TW(v2)α

≈ 0.53.

Since we assume that the bases α and β are orthogonal, the terms dead and killed
contribute nothing to the cosine similarity despite the clear synonymy, because
〈βdead, βkilled〉 = 0. In general, the vsm will underestimate the true similarity
between documents that carry the same meaning but use different terminology.

In this paper, we further develop the soft vsm described by Sidorov
et al. (2014), which does not assume α is orthogonal and which achieved state-
of-the-art results on the question answering (qa) task at SemEval 2017. We
restate the definition of the soft vsm, we prove a tighter lower worst-case time
complexity bound of O(n3) for an orthonormalization problem, and we discuss
practical implementation in vector databases and inverted indices. We conclude
by summarizing our results and suggesting future work.

In this section, we restate the definition of the soft vsm as described by
Sidorov et al. (2014). We then prove a tighter lower worst-case time complexity
bound for computing a change-of-basis matrix to an orthonormal basis. We also
prove that under some assumptions, the inner product is a linear-time operation.

Definition 3.1. Let Rn be the real n-space over R equipped with the bilinear in-
ner product 〈·, ·〉. Let {αi}

n
i=1 be the basis of Rn in which we express our vectors.

Let Wα = (wi j) be a diagonal change-of-basis matrix from α to a normalized
basis {βi}

n
i=1 of Rn, i.e. 〈βi, β j〉 ∈ [−1,1], 〈βi, βi〉 = 1. Let Sβ = (si j) be the

metric matrix of Rn w.r.t. β, i.e. si j = 〈βi, β j〉. Then (Rn,Wα,Sβ) is a soft vsm.

Theorem 3.2. Let G = (Rn,Wα,Sβ) be a soft vsm. Then a change-of-basis
matrix E from the basis β to an orthonormal basis of Rn can be computed in
time O(n3).

Proof. By definition, S = EET for any change-of-basis matrix E from the basis
β to an orthonormal basis. Since S contains inner products of linearly indepen-
dent vectors β, it is Gramian and positive definite. The Gramianness of S also
implies its symmetry. Therefore, a lower triangular E is uniquely determined by
the Cholesky factorization of the symmetric positive-definite S, which we can
compute in time O(n3). �

Remark. See Table 1 for an experimental comparison.

Lemma 3.3. Let G = (Rn,Wα,Sβ) be a soft vsm. Let x,y ∈ Rn. Then 〈x,y〉 =
(W(x)α)TSW(y)α.

Proof. Let E be the change-of-basis matrix from the basis β to an orthonormal
basis γ of Rn. Then:

〈x,y〉 =
(
(x)γ

)T
(y)γ =

(
E(x)β

)TE(y)β =
(
EW(x)α

)TEW(y)α

=

(n∑
i=1
(αi)γ · wii · (xi)α

)
·

(n∑
j=1
(α j)γ · w j j · (y j)α

)
=

n∑
i=1

n∑
j=1

wii · (xi)α · 〈αi,α j〉 · w j j · (y j)α

=

n∑
i=1

n∑
j=1

wii · (xi)α · si j · w j j · (y j)α =
(
W(x)α

)TSW(y)α. �

Remark. From here, we can directly derive the cosine of the angle be-
tween x and y (i.e. what Sidorov et al. (2014) call the scm) as follows:

〈x/‖x‖,y/‖y‖〉 =
(
W(x)α

)TSW(y)α√(
W(x)α

)TSW(x)α
√(

W(y)α
)TSW(y)α

.

The scm is actually the starting point for Charlet and Damnati (2017), who
propose matrices S that are not necessarily metric. If, like them, we are only
interested in computing the scm, then we only require that the square roots
remain real, i.e. that x , 0 =⇒ (W(x)α)TSW(x)α ≥ 0. For arbitrary x ∈ Rn,
this holds iff S is positive semi-definite. However, since the coordinates (x)α
correspond to non-negative term frequencies, it is sufficient that W and S are

Computational Complexity

Table 1: The real time to compute a change-of-basis matrix E from a dense
matrix S averaged over 100 iterations. We used two Intel Xeon E5-2650 v2
processors to evaluate the O(n3) Cholesky factorization from NumPy 1.14.3,
and the O(n4) iterated Gaussian elimination from lapack. For n > 1000, only
sparse S seem practical.

n terms Algorithm Real computation time

100 Cholesky factorization 0.0006 sec (0.606 ms)
100 Gaussian elimination 0.0529 sec (52.893 ms)
500 Cholesky factorization 0.0086 sec (8.640 ms)
500 Gaussian elimination 22.7361 sec (22.736 sec)

1000 Cholesky factorization 0.0304 sec (30.378 ms)
1000 Gaussian elimination 354.2746 sec (5.905 min)

Figure 1: Vectors of documents d3 = “Hi, world”, and d4 = “Hello, world” assuming the coordinates are in an orthonormal basis (left), and in a non-orthogonal
basis {αi}

3
i=1 (right). The inner product between the basis vectors αhi,αhello, and αworld is derived from the cosine similarity of word2vec word embeddings (middle).

non-negative as well. If we are only interested in computing the inner product,
then S can be arbitrary.

Theorem 3.4. Let G = (Rn,Wα,Sβ) be a soft vsm such that no column of S con-
tains more than C non-zero elements, where C is a constant. Let x,y ∈ Rn and
let m be the number of non-zero elements in (x)β. Then 〈x,y〉 can be computed
in time O(m).

Proof. Assume that (x)α, (y)α, and S are represented by data structures with
constant-time column access and non-zero element traversal, e.g. compressed
sparse column (csc) matrices. Further assume W is represented by an array con-
taining the main diagonal of W. Then Algorithm 1 computes

(
W(x)α

)TSW(y)α
in time O(m), which by Lemma 3.3, corresponds to 〈x,y〉. �

Algorithm 1 The inner product of x and y
1: r ← 0
2: for each i such that (xi)α is non-zero do . = m iterations
3: for each j such that si j is non-zero do . ≤ C iterations
4: r ← r + wii · (xi)α · si j · w j j · (y j)α
5: return r

Remark. Similarly, we can show that if a column of S contains C non-zero ele-
ments on average, 〈x,y〉 has the average-case time complexity ofO(m). Note also
that most information retrieval systems impose a limit on the length of a query
document. Therefore, m is usually bounded by a constant and O(m) = O(1).

Since we are usually interested in the inner products of all document pairs in
two corpora (e.g. one containing queries and the other actual documents), we can
achieve significant speed improvements with vector processors by computing
(WX)TSWY, where X, and Y are corpus matrices containing the coordinates
of document vectors in the basis α as columns. To compute the scm, we first
need to normalize the document vectors by performing an entrywise division
of every column in X by diag

√
(WX)TSWX =

√
(WX)TS ◦ (WX)T, where ◦

denotes entrywise product. Y is normalized analogously.
There are several strategies for making no column of S contain more than

C non-zero elements. If we do not require that S is metric (e.g. because we
only wish to compute the inner product, or the scm), a simple strategy is to
start with an empty matrix, and to insert the C − 1 largest elements and the
diagonal element from every column of S. However, the resulting matrix will
likely be asymmetric, which makes the inner product formula asymmetric as
well. We can regain symmetry by always inserting an element si j together with
the element s ji and only if this does not make the column j contain more than
C non-zero elements. This strategy is greedy, since later columns contain non-
zero elements inserted by earlier columns. Our preliminary experiments suggest
that processing colums that correspond to increasingly frequent terms performs
best on the task of Charlet and Damnati (2017). Finally, by limiting the sum
of all non-diagonal elements in a column to be less than one, we can make S
strictly diagonally dominant and therefore positive definite, which enables us to
compute E through Cholesky factorization.

Implementation in Vector Databases

and Inverted Indices
In this section, we present coordinate transformations for retrieving nearest

document vectors from general-purpose vector databases such as Annoy, or
Faiss. We also discuss the implementation in the inverted indices of text search
engines such as Apache Lucene, or Elasticsearch.
Remark. With a vector database, we can transform document vectors to an
orthonormal basis γ. In the transformed coordinates, the dot product ((x)γ)T(y)γ
corresponds to the inner product 〈x,y〉 and the cosine similarity corresponds
to the cosine of an angle 〈x/‖x‖,y/‖y‖〉 (i.e. the soft cosine measure). A
vector database that supports nearest neighbor search according to either the
dot product, or the cosine similarity will therefore retrieve vectors expressed
in γ according to either the inner product, or the soft cosine measure. We can
compute a change-of-basis matrix E of order n in time O(n3) by Theorem 3.2
and use it to transform every vector x ∈ Rn to γ by computing EW(x)α.
However, this approach requires that S is symmetric positive-definite and that
we recompute E, and reindex the vector database each time S has changed.
We will now discuss transformations that do not require E and for which a
non-negative S is sufficient as discussed in the remark for Lemma 3.3.

Theorem 4.1. Let G = (Rn,Wα,Sβ) be a soft vsm. Let x,x′,y ∈ Rn such that
(x′)β = ST(x)β. Then 〈x,y〉 = ((x′)β)T(y)β.

Proof.
(
(x′)β

)T
(y)β=

(
(x)β

)TS(y)β= 〈x,y〉 from Lemma 3.3. �

Remark. By transforming a query vector x into (x′)β, we can retrieve documents
according to the inner product in vector databases that only support nearest
neighbor search according to the dot product. Note that we do not introduce
S into (y)β, which allows us to change S without changing the documents in
a vector database and that S can be arbitrary as discussed in the remark for
Lemma 3.3.

Theorem 4.2. Let G = (Rn,Wα,Sβ) be a soft vsm. Let x,x′,y,y′,z,z′ ∈ Rn such
that x,y,z , 0, (x′)β = ST(x)β, (y′)β =

(y)β√(
(y)β

)T
S(y)β

, and (z′)β =
(z)β√(
(z)β

)T
S(z)β

.

Then 〈x/‖x‖,y/‖y‖〉 ≤ 〈x/‖x‖,z/‖z‖〉 iff
(
(x′)β

)T
(y′)β ≤

(
(x′)β

)T
(z′)β.

Proof.
(
(x′)β

)T
(y′)β =

((x)β)TS(y)β√
((y)β)TS(y)β

. By Lemma 3.3, this equals 〈x/‖x‖,y/‖y‖〉

except for the missing term
√(
(x)β

)TS(x)β in the divisor. The term is constant
in both 〈x/‖x‖,y/‖y‖〉, and 〈x/‖x‖,z/‖z‖〉, so ordering is preserved. �

Remark. By transforming a query vector x into (x′)β and document vectors y
into (y′)β, we can retrieve documents according to the scm in vector databases
that only support nearest neighbor search according to the dot product.

Theorem 4.3. Let G = (Rn,Wα,Sβ) be a soft vsm s.t. Sβ is non-negative. Let
x,y,y′,z,z′ ∈ Rn, and x′,y′′,z′′ ∈ Rn+1 s.t. x , 0,y,z > 0,

(x′)β′ =
 ST(x)β√(

ST(x)β
)T

ST(x)β

0

T

, (y′)β =
(y)β√(
(y)β

)T
S(y)β

,

(y′′)β′ =
[(
(y′)β

)T √
1 −

(
(y′)β

)T
(y′)β

]T
, (z′)β =

(z)β√(
(z)β

)T
S(z)β

, and

(z′′)β′ =
[(
(z′)β

)T √
1 −

(
(z′)β

)T
(z′)β

]T
, where β′ = β ∪ {[0 . . . 0 1]T ∈ Rn+1}.

Then 〈x/‖x‖,y/‖y‖〉 ≤ 〈x/‖x‖,z/‖z‖〉 iff(
(x′)β′

)T
(y′′)β′√(

(x′)β′
)T
(x′)β′

√(
(y′′)β′

)T
(y′′)β′

≤

(
(x′)β′

)T
(z′′)β′√(

(x′)β′
)T
(x′)β′

√(
(z′′)β′

)T
(z′′)β′
.

Proof.
(
(x′)β′

)T
(x′)β′ = 1. Since S is non-negative, and (y)β > 0,√(

(y)β
)TS(y)β ≥

√(
(y)β

)T
(y)β and therefore

(
(y′)β′

)T
(y′)β′ ≤ 1, and(

(y′′)β′
)T
(y′′)β′ = 1. Therefore:(
(x′)β′

)T
(y′′)β′√(

(x′)β′
)T
(x′)β′

√(
(y′′)β′

)T
(y′′)β′

=
(
(x′)β′

)T
(y′′)β′

=

(
(x)β

)TS(y)β√(
ST(x)β

)TST(x)β
√(
(y)β

)TS(y)β
.

By Lemma 3.3, this equals 〈x/‖x‖,y/‖y‖〉 except for the missing term√(
(x)β

)TS(x)β, and the extra term
√(

ST(x)β
)TST(x)β in the divisor. These are

constant in 〈x/‖x‖,y/‖y‖〉, and 〈x/‖x‖,z/‖z‖〉, so ordering is preserved. �

Remark. By transforming a query vector x into (x′)β′ and document vectors y
into (y′′)β′, we can retrieve documents according to the scm in vector databases
that only support nearest neighbor search according to the cosine similarity.

Whereas most vector databases are designed for storing low-dimensional and
dense vector coordinates, document vectors have the dimension n, which can be
in the millions for real-world corpora such as the English Wikipedia. Apart from
that, a document contains only a small fraction of the terms in the vocabulary,
which makes the coordinates extremely sparse. Therefore, the coordinates need
to be converted to a dense low-dimensional representation, using e.g. the latent
semantic analysis (lsa), before they are stored in a database or used for queries.

Unlike vector databases, inverted-index-based search engines are built
around a data structure called the inverted index, which maps each term in our
vocabulary to a list of documents (a posting) containing the term. Documents
in a posting are sorted by a common criterion. The search engine tokenizes a
text query into terms, retrieves postings for the query terms, and then traverses
the postings, computing similarity between the query and the documents.

We can directly replace the search engine’s document similarity formula with
the formula for the inner product from Lemma 3.3, or the formula for the scm.
After this straightforward change, the system will still only retrieve documents
that have at least one term in common with the query. Therefore, we first need
to expand the query vector x by computing ((x)β)TS and retrieving postings for
all terms corresponding to the nonzero coordinates in the expanded vector. The
expected number of these terms is O(mC), where m is the number of non-zero
elements in (x)α, and C is the maximum number of non-zero elements in any
column of S. Assuming m and C are bounded by a constant, O(mC) = O(1).

Conclusion and Future Work
In this paper, we examined the soft vector space model (vsm) of Sidorov

et al. (2014). We restated the definition, we proved a tighter lower time complex-
ity bound of O(n3) for a related orthonormalization problem, and we showed
how the inner product, and the soft cosine measure between document vectors
can be efficiently computed in general-purpose vector databases, in the inverted
indices of text search engines, and in other applications. To complement this
paper, we also provided an implementation of the scm to Gensim,a a free
open-source natural language processing library.

In our remarks for Theorem 3.4, we discuss strategies for making no column
of matrix S contain more than C non-zero elements. Future research will eval-
uate their performance on the semantic text similarity task with public datasets.
Various choices of the matrix S based on word embeddings, Levenshtein dis-
tance, thesauri, and statistical regression as well as metric matrices from pre-
vious work will also be evaluated both amongst themselves and against other
document similarity measures such as the lda, lsa, and wmd.

aSee https://github.com/RaRe-Technologies/gensim/, pull requests 1827, and 2016.

Acknowledgements
We gratefully acknowledge the support by tačr under the Omega program,

project td03000295.

Bibliography
NOVOTNÝ, Vı́t. Implementation Notes for the Soft Cosine Measure. In Pro-

ceedings of the 27th ACM International Conference on Information and Knowl-
edge Management (CIKM ’18). Torino, Italy: Association for Computing Ma-
chinery, 2018. 4 pp. ISBN 978-1-4503-6014-2. doi:10.1145/3269206.3269317.

“Hi, world”

“Hello, world”

“Hi, world”

hi hello

hello hello

hi

worldworld

world

hi

R3

“Hello, world”

{αi}
3
i=1

