DML editor

I118n

precious stones

&

vegetables

Miha Filej

nternationalizatior

113n

Internationalization is usually abbreviated down to i18n.

118n = t9n + 110n

Translation

%

Lots and lots of strings in our application need to adapt to the user’s language. Translation
could easily be the most important part of the i18n process, but it is not enough by itself.

[.ocalization

¥

There is also localization.

It’s hard to achieve complete localization. It mostly depends on the needs of our application
and on how much do we want to complicate our lives.

.

s .
,

Ul Qe [BUO!]BUJQIUL,':\

QUIT JB(] [eUONBUINU]

z
= ==,

i

S

:
:
:
:
:
:
\

o

oy Z "'
’l

°, Z .
=

b

STANDARD TIME ZONES ;“ Standard Time = Universal Time — value from table
Corrected to February 2008 el Universal Time = Standard Time + value from table

Zone boundaries are approximate h m A = b m b m h m

Daylight Saving Time (Summer Time), o D*-430 H -8 L -11 N +1 Q*+430 V

usually one hour in advance of Standard . E‘ -5 I* -9 h‘ -1130 O +2 R +¢53 :lv*
Time, is kept in some places E* -530 I* -930 <12 P +3 S +

F -6 K -10 M* 13 P*+330 T +7 X
Map outline © Mountain High Maps C*-330 F* -630 K*-1030 M7t -14 Q +4 U +8 Y

Compiled by HM Nautical Almanac Office D -4 G -7 % No Standard Time legally adopted

1 8|O° 1 59°W 1 20l°W 90;’W 6OTW 30;’W (?° 3OIOE 6OI°E 90l°E 1 2(I)°E 1 5(')°E 1 SIOO

A very common case of 18n are timezones.

If our user base covers a big enough region, we have to make sure that every date that comes
out of our application is handled within a proper timezone.

=
+
>

March 2010 March 2010

Wed Thu Fri Sa vion ue Wed Thu Fri Sat Sun DO u I

brezen 2010

2 3 4 5 3 4 5 6 7 3 4 5 6 7
9 10 11 12 13 9 10 11 12 8 9 10 11 12 13 14
16 i ivgl 18 19 15 16 pk@ 18 19 20 21
23 24 25 26 27 @22 23 24 25 26 22 23 24 25 26 27 28
30 31 29 30 31 29 30 31

Usually we wan’t our users to feel good, so we try to make our application behave nicely and
provide aids. It is often useful to provide a calendar or so called date-picker along with the
text box.

This are localized versions of the calendar on my phone. The one on the far right is the czech
version. The other two are both English, but they’re not the same. Can you guess which is the
US and which is the UK version?

In the US week starts on Sunday.

> select created_at from publications;

createdat 21 minutes ago
2010-03-17 00:49:31 21 minut nazaj
2010-03-14 01:10:04

2 rows in set (0.00 sec)
3 days ago
pred 3 dnevi

Another way to enhance user experience is to hide ugly (database) date representations from
the user.

A nicer way is to refer to a past time in the form of a sentence.

It’s not just about translating words, sentences change according to the context.

And there is also noun pluralization. We might have 1 “day” or 2 or 3 “days” ago.

count(n, "people™)

1 person 1 clovek
2 people 2 cloveka
3 people 3 ljudje

1) So we probably want to have a function that takes a non-negative integer and a string
2) and returns a pluralized string
3) But apart from having to know the plural forms of the nouns, there are other exceptions,

like dual in slovenian (we refer to a set with two items differently than to a set with more than
two)

dsadll haui | iGoogle Mail e sans ozl) gea vy

Google

e ol sia)
a3l Calgsh Lo iy | Google Say |

English :<dslls 50 Google.com. e @l

Google.com in English - ks Google oe 438y caad Lo o8 - S 7eds il

Google 2003@

1) The localization issues we encountered so far are relatively easy to counter. Depending on
which regions we plan to support we may encounter tougher problems.

2) One such example are regions that use right-to-left writing. This is the google localized
for Egypt for example. The problem is tougher to tackle because it is not enough to modify
the strings, but we have to change the way the Ul is rendered.

Cultural
differences

Cultural differences: offending words etc.

But this is further than we want to go. We probably just want to go step by step, translating
strings first and localizing other data later on, depending on the importance.

Summary

translation

time and date formats
timezones
pluralization

other language specific behavior

Problem

message = "Please log 1in"”
user_input = prompt(msg)

1t (verify(user_input)) { Login successful
alert(”"Login successful” 2010-16-03

+ Date.today())

} else {
alert("Back off!")

¥

Basically we can reduce the problem to this:

We’d like to translate an application
We want to avoid any logic to handle the translations in the current code

We want to change the code as little as possible so we don’t break things

Goal

message = t("Please log in")

Login successful
03/16/2010

user_input = prompt(msg)

1t (verify(user_input)) {
alert(t("login.success"))
+ 1(Date.today())) | PrihlaSeni bylo Usp&sné
1 else { ' 3.16.2010
alert(t("login.error™))

¥

Ideally we would set the locale at the beginning of the interaction with the user. Then the
translation and localization functions would handle translation and localization depending on
the set locale. We’d probably want to set their names to something short, like T and L in this

example.

But all this changes in the code are very likely to introduce a lot of bugs. How do we cope
with that?

integration

‘functional

Possible solution: automated testing

Ruby is a general purpose, highly dynamic, OO language.

It’s fairly new, conceived in japan ~ 1993, first public release in 1995. It only became popular
outside japan in 1999, very popular in the last 5 years because of web frameworks.

I wanted a scripting language
that was more powerful than Perl,
and more object-oriented than Python.

That's why I decided to design
my own language.

—Yukihiro Matsumoto

Ruby supports many programming paradigms (OO, functional, imperative, reflective - doesn't
impose a programming style to the programmer)

It has dynamic and duck typing.
It is interpreted.

Implementations

MRI, JRuby (JVM), IronRuby (.NET),
MacRuby (ObjC), Rubinius...

perl

ruby

smalltalk

- extremely dynamic
- emphasizes programmer friendliness
- designed for productivity and fun

- emphasizes human, rather than computer needs

AL WY TTTYTY

\

\

S L L LT DT

-

7

-

r

r

'

L] r

: r

’ - [

Z i
But it can be slow at times, or have a bigger footprint than some other languages.

The main idea is that nowadays hardware is cheaper than programmers, and it seems to pay
off.

Cucumber

1: Describe behaviour in plain text

Feature: Addition

In order to avoid silly mistakes

As a math i1diot

I want to be told the sum of two numbers
Scenario: Add two numbers:

Given I have entered 50 into the calculator
And I have entered 70 into the calculator
When 1 press add

Then the result should be 120 on the screen

4. Write code to make the step pass

class Calculator
def push(n)

2: Write a step definition in Ruby

Given /I have entered (.*) into the calculator/ do |
calculator = . New
calculator.push(n.to_1)

end

5. Run again and see the step pass

$ cucumber features/oddition.feature
Feature: Addition
In order to avoid silly mistokes

3: Run and watch it fail

$ cucumber fectures/oddition.feature
Feature: Addition

In order to avoid silly mistokes

As a math idiot

I wont to be told the sum of two mumbers

Scenario: Add two numbers

And 1 have entered 79 into the calculator
When I press odd
Then the result should be 120 on the screen

6. Repeat 2-5 until green like a cuke

$ cucumber feotures/oddition.feature
Feature: Addition
In order to avoid silly mistokes

H=0J As a math idiot As o math idiot
<<n I wont to be told the sum of two numbers I wmont to be told the sum of two numbers
end Scenario: Add two numbers Scenarmio: Add two rnumbers
end Given I hove entered SO into the calculator Given I hove entered

And I have entered 79 into the calculator

When I press odd
Then the result should be 120 on the screen

7. Repeat 1-6 until the money runs out We want swag! Download

DONATE Pledoie.com
> |- sl
$2.376.91 Raised!

Cucumber lets software development teams You need Ruby installed. Then just run
describe how software should behave in

plain text. The text is writtenina t

gem install cucumber

The money raised for this campaign willbe ~ from a command prompt. Now, run

| Ol main-specific lal > and spent to produce Cucumber swag to
serves as documentation, automated tests promote Cucumber: T-shirts, cups and other
and development-aid - all rolled into one things.

format. Testi_monials
Now let’s connect ruby with the topic from earlier - automated testing.

cucumber =--help

The wiki has more information.

The ruby community gained an interesting tool last year.

If you remember the stack from a few slides back, cucumber would sit right on top of
integration testing. Id does integration testing, but with an attitude. It’s designed for
behavior driven development.

The idea is that we specify a feature we’d like our application to have, then
— write a cucumber test or (so called feature),
— which will fail at this stage, because we haven’t actually written any code yet.

We then proceed with implementing the feature, making the steps of a feature pass one after
another, until all of them are green.

Feature: Addition
In order to avoid silly mistakes
As a math idiot
I want to be told the sum of two numbers

Scenario Add two numbers
Given I have entered <input_1> 1into the calculator
And I have entered <input_2> into the calculator
When I press <button>
Then the result should be <output> on the screen

Examples:
1nput_1 input_2 | button | output
20 30 add 50
2 5 add /
0 40 add 40

This is an example of a cucumber feature. As you can see, it is written in plain text. The
reason for this is that we want the feature specifications to be understood not only by
programmers, but also by domain experts.

The idea is that before implementing something, before writing any code, you sit down with
your customer/coworkers/boss/project manager and write down the specification for the
feature, so everyone will understand what is being worked on and

And when something breaks, everyone can see what went wrong.

demo

[cucumber calculator demo]

Feature: Addition
In order to avoid silly mistakes
As a math idiot
I want to be told the sum of two numbers

Scenario Add two numbers
Given I have entered <input_1> 1into the calculator
And I have entered <input_2> into the calculator
When I press <button>
Then the result should be <output> on the screen

Examples:
1nput_1 input_2 | button | output
20 30 add 50
2 5 add /
0 40 add 40

Another interesting feature is that the syntax for specifying features is not fixed and can thus
be written in any language.

Funzionalita: somma
Per evitare di fare errori stupidi

Come utente
Voglio sapere la somma di due numeri

Scenario: la somma di due numeri
Dato che ho 1inserito 5
E che ho 1nserito 7
Quando premo somma
Allora 11 risultato deve essere 12

Calculator addition feature in italian.

J4—F¥: JIE
INHIEEEWZ R TS T=0IC
BEAVFELT
2DDEDEETZHD =Ly

DFUATFYTL—h: 2DDHEDOMEICDWT
Al <(B1> Z AN
MDD <E2> & AN
HU <Ry > UK
F5E <fER> ZRR

GE
1 | B2 | hYY | #E
20 30 add 50
2 5 add 7
0 40 add 40

And japanese.

back to 118n

GNU gettext

a.k.a. the underscore method

Probably the oldest well known i18n solution is GNU gettext. I’ve heard people refer to it as
the grandfather or the dinosaur of Internationalization. A lot of modern solutions is still
based on it, in one way or another.

ruby & 118n

What are the i18n tools available in the ruby ecosystem?

As | mentioned ruby became popular with web applications, and naturally i18n is very
common in this field. So after 2005, when rails and other frameworks were being adopted
more an more, different solutions surfaced.

There are a few ruby gettext implementations and others that use database or the

filesystems to store translations, but each of them originated from different parts of the
community and each project tried to solve different problems. There were major
incompatibilities between them, they were often targeted at a specific framework and it was
difficult to get something working for with new language and locale.

require "118n"

Then in 2007 an effort to make a generic i18n library emerged. People that were previously
working on all those project started to work together, but their goals were too different and

in they couldn’t agree on much in a long time. They took a break and after half a year they
agreed on a different approach:

Rather than solving all the translation and localization cases poorly, they decided to make a
library that will provide an standard interface, so that it could be easily extended.

It is called i18n.

It provides the basic facilities for translating a language similar to english, and it provides
some basic localization.

Backends

text/yaml databases

It comes with a few ways to store the translated data.

The main backend is called SimpleBackend and it stores translations into yaml files.

There is support for storing translations into databases, and there is also basic support for
gettext’s .so and .po files.

There’s a few more features, but the beauty is that there aren’t many more. After the library
was conceived, many different libraries that interface with it started emerging, which are now
actually compatible between them, and a programmer can choose which one to use
depending on the needs of the target language and locale.

demo

[activesupport pluralization demo]

Ticket #10919 (closed enhancement: wontfix)

incorrect pluralization

Reported by: srbaker
Priority: normal
Component: ActiveSupport
Severity normal

(e

Description

Assigned to:
Milestone
Version:

Keywords

core
2.X
edge

verified tiny

Rails improperly pluralizes the word "penis”. From the New Oxford American Dictionary:

penis |'pénis| noun (pl. -nises or -nes |-néz|) the male genital organ of higher vertebrates,
carrying the duct for the transfer of sperm during copulation. In humans and most other
mammals, it consists largely of erectile tissue and serves also for the elimination of urine.

As described here, there are two appropriate pluralizations of the word penis: penises or penes.
The more common pluralization, penises, should be used.

While technically this is a defect, "enhancement” feels like a more appropriate word to describe

this particular problem.

Attachments

= penis_enhancement.diff (1.0 kB) - added by srbaker on 01/24/08 22:22:46.
Enhancement to add penis plural to the inflector.

Infamous rails ticket

References

http://cukes.info/
http://dev.rubyonrails.org/ticket/ 10919

http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919

Credits

http://www.flickr.com/photos/28192677@N06/361 1301682/
http://www.flickr.com/photos/cipherswarm/2414578959/
http://www.survivalworld.com/maps/index.html

http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919

Miha File]
miha@filej.net

http://twitter.com/mfile]

