
DML editor

I18n
e

precious stones
&

vegetables

Miha Filej

Internationalization
a word so long it doesn’t fit on a slide

i18n

Internationalization is usually abbreviated down to i18n.

i18n = t9n + l10n

What does it mean?

Translation

s

Lots and lots of strings in our application need to adapt to the user’s language. Translation
could easily be the most important part of the i18n process, but it is not enough by itself.

Localization

q

There is also localization.

It’s hard to achieve complete localization. It mostly depends on the needs of our application
and on how much do we want to complicate our lives.

A very common case of l8n are timezones.

If our user base covers a big enough region, we have to make sure that every date that comes
out of our application is handled within a proper timezone.

Usually we wan’t our users to feel good, so we try to make our application behave nicely and
provide aids. It is often useful to provide a calendar or so called date-picker along with the
text box.

This are localized versions of the calendar on my phone. The one on the far right is the czech
version. The other two are both English, but they’re not the same. Can you guess which is the
US and which is the UK version?

In the US week starts on Sunday.

> select created_at from publications;
+---------------------+
| created_at |
+---------------------+
| 2010-03-17 00:49:31 |
| 2010-03-14 01:10:04 |
+---------------------+
2 rows in set (0.00 sec)

3 days ago
pred 3 dnevi

21 minutes ago
21 minut nazaj

Another way to enhance user experience is to hide ugly (database) date representations from
the user.

A nicer way is to refer to a past time in the form of a sentence.

It’s not just about translating words, sentences change according to the context.

And there is also noun pluralization. We might have 1 “day” or 2 or 3 “days” ago.

1 person
2 people
3 people
 …

1 človek
2 človeka
3 ljudje
 …

count(n, "people")

1) So we probably want to have a function that takes a non-negative integer and a string
2) and returns a pluralized string
3) But apart from having to know the plural forms of the nouns, there are other exceptions,
like dual in slovenian (we refer to a set with two items differently than to a set with more than
two)

1) The localization issues we encountered so far are relatively easy to counter. Depending on
which regions we plan to support we may encounter tougher problems.

2) One such example are regions that use right-to-left writing. This is the google localized
for Egypt for example. The problem is tougher to tackle because it is not enough to modify
the strings, but we have to change the way the UI is rendered.

Cultural
differences

Cultural differences: offending words etc.

But this is further than we want to go. We probably just want to go step by step, translating
strings first and localizing other data later on, depending on the importance.

Summary

• translation
• time and date formats
• timezones
•pluralization
•other language specific behavior

Problem
message = "Please log in"

user_input = prompt(msg)

if (verify(user_input)) {
 alert("Login successful"
 + Date.today())
} else {
 alert("Back off!")
}

Login successful
2010-16-03

Basically we can reduce the problem to this:

We’d like to translate an application
We want to avoid any logic to handle the translations in the current code
We want to change the code as little as possible so we don’t break things

Goal
message = t("Please log in")

user_input = prompt(msg)

if (verify(user_input)) {
 alert(t("login.success"))
 + l(Date.today()))
} else {
 alert(t("login.error"))
}

Přihlášení bylo úspěšné
3.16.2010

Login successful
03/16/2010

Ideally we would set the locale at the beginning of the interaction with the user. Then the
translation and localization functions would handle translation and localization depending on
the set locale. We’d probably want to set their names to something short, like T and L in this
example.

Refactoring

But all this changes in the code are very likely to introduce a lot of bugs. How do we cope
with that?

integration

functional

unit

Possible solution: automated testing

Ruby

Ruby is a general purpose, highly dynamic, OO language.

It’s fairly new, conceived in japan ~ 1993, first public release in 1995. It only became popular
outside japan in 1999, very popular in the last 5 years because of web frameworks.

I wanted a scripting language
that was more powerful than Perl,
and more object-oriented than Python.

That's why I decided to design
my own language.

“
”—Yukihiro Matsumoto

Ruby supports many programming paradigms (OO, functional, imperative, reflective - doesn't
impose a programming style to the programmer)

It has dynamic and duck typing.
It is interpreted.

Implementations

MRI, JRuby (JVM), IronRuby (.NET),
MacRuby (ObjC), Rubinius…

lisp

python, etc.

smalltalk

perl

ruby

- extremely dynamic
- emphasizes programmer friendliness
- designed for productivity and fun
- emphasizes human, rather than computer needs

But it can be slow at times, or have a bigger footprint than some other languages.

The main idea is that nowadays hardware is cheaper than programmers, and it seems to pay
off.

Now let’s connect ruby with the topic from earlier - automated testing.

The ruby community gained an interesting tool last year.

If you remember the stack from a few slides back, cucumber would sit right on top of
integration testing. Id does integration testing, but with an attitude. It’s designed for
behavior driven development.

The idea is that we specify a feature we’d like our application to have, then
- write a cucumber test or (so called feature),
- which will fail at this stage, because we haven’t actually written any code yet.

We then proceed with implementing the feature, making the steps of a feature pass one after
another, until all of them are green.

Feature: Addition
 In order to avoid silly mistakes
 As a math idiot
 I want to be told the sum of two numbers

 Scenario Add two numbers
 Given I have entered <input_1> into the calculator
 And I have entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |

This is an example of a cucumber feature. As you can see, it is written in plain text. The
reason for this is that we want the feature specifications to be understood not only by
programmers, but also by domain experts.

The idea is that before implementing something, before writing any code, you sit down with
your customer/coworkers/boss/project manager and write down the specification for the
feature, so everyone will understand what is being worked on and

And when something breaks, everyone can see what went wrong.

demo

[cucumber calculator demo]

Feature: Addition
 In order to avoid silly mistakes
 As a math idiot
 I want to be told the sum of two numbers

 Scenario Add two numbers
 Given I have entered <input_1> into the calculator
 And I have entered <input_2> into the calculator
 When I press <button>
 Then the result should be <output> on the screen

 Examples:
 | input_1 | input_2 | button | output |
 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |

Another interesting feature is that the syntax for specifying features is not fixed and can thus
be written in any language.

Funzionalitá: somma
 Per evitare di fare errori stupidi
 Come utente
 Voglio sapere la somma di due numeri

 Scenario: la somma di due numeri
 Dato che ho inserito 5
 E che ho inserito 7
 Quando premo somma
 Allora il risultato deve essere 12

Calculator addition feature in italian.

フィーチャ: 加算
 バカな間違いを避けるために
 数学オンチとして
 2つの数の合計を知りたい

 シナリオテンプレート: 2つの数の加算について
 前提 <値1> を入力
 かつ <値2> を入力
 もし <ボタン> を押した
 ならば <結果> を表示

 例:

 | 値1 | 値2 | ボタン | 結果 |

 | 20 | 30 | add | 50 |
 | 2 | 5 | add | 7 |
 | 0 | 40 | add | 40 |

And japanese.

back to i18n

GNU gettext
(a.k.a. the underscore method)

Probably the oldest well known i18n solution is GNU gettext. I’ve heard people refer to it as
the grandfather or the dinosaur of Internationalization. A lot of modern solutions is still
based on it, in one way or another.

ruby & i18n

What are the i18n tools available in the ruby ecosystem?

As I mentioned ruby became popular with web applications, and naturally i18n is very
common in this field. So after 2005, when rails and other frameworks were being adopted
more an more, different solutions surfaced.

There are a few ruby gettext implementations and others that use database or the
filesystems to store translations, but each of them originated from different parts of the
community and each project tried to solve different problems. There were major
incompatibilities between them, they were often targeted at a specific framework and it was
difficult to get something working for with new language and locale.

require "i18n"

Then in 2007 an effort to make a generic i18n library emerged. People that were previously
working on all those project started to work together, but their goals were too different and
in they couldn’t agree on much in a long time. They took a break and after half a year they
agreed on a different approach:

Rather than solving all the translation and localization cases poorly, they decided to make a
library that will provide an standard interface, so that it could be easily extended.

It is called i18n.

It provides the basic facilities for translating a language similar to english, and it provides
some basic localization.

Backends
text/yaml databases.so, .po

your
own

It comes with a few ways to store the translated data.

The main backend is called SimpleBackend and it stores translations into yaml files.
There is support for storing translations into databases, and there is also basic support for
gettext’s .so and .po files.

There’s a few more features, but the beauty is that there aren’t many more. After the library
was conceived, many different libraries that interface with it started emerging, which are now
actually compatible between them, and a programmer can choose which one to use
depending on the needs of the target language and locale.

demo

[activesupport pluralization demo]

Infamous rails ticket

?

References

http://cukes.info/
http://dev.rubyonrails.org/ticket/10919

http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919

Credits

http://www.flickr.com/photos/28192677@N06/3611301682/
http://www.flickr.com/photos/cipherswarm/2414578959/

http://www.survivalworld.com/maps/index.html

http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919
http://dev.rubyonrails.org/ticket/10919

Miha Filej
miha@filej.net

http://twitter.com/mfilej

